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Abstract--Nitrogen bubbles were emitted by a single horizontal orifice submerged in an aqueous solution of 
sodium carboxymethylcellulose (C.M.C.). Their behaviour follows the Ostwald D~ Waele rheological 
model: ~- = mEo"; r is the shear stress and Eo the shear rate. 

Experimental range of variables 

Solution of C.M.C. 

m + 10 6 × Q Ap 
% mass (kg.m -1 x s "-2 n (m) (m3/s) (Pa) 

3 3.04 0.68 0.2530 × 10 -2 0-200 10-1500 

Here, m and n are the parameters of the power law model, ~b the orifice diameter, Q gas flow rate and Ap 
the pressure drop at the orifice. Models of bubble formation in non-Newtonian liquids based on the 
concepts given by Davidson & Schuler (1960) and by Kumar & Kuloor (1969, 1970) have been developed 
under constant pressure and under constant flow rate conditions. When the Reynolds number at the orifice 
is lower than 1000, bubbles are formed under constant pressure conditions; for a Reynolds number greater 
than 1000, the bubbles are formed under constant flow rate conditions. The comparison of theoretical 
variation of bubble radius shows that Davidson & Schuler's and Kumar & Kudoor's models are in 
agreement, but Davidson & Schuler's models are more suitable to represent bubble formation. 

I. INTRODUCTION 

Bubbling gas in liquid is widely used in industrial processes, such as fluidized combustion of 
sulphur or hydrocarbons, ventilation of industrial liquid waste, polymerization reactions and 
fermentations where an intimate contact between viscous liquid and gas is not easily achieved. 

As most industrial liquids are non-Newtonian, we have undertaken research on the forma- 
tion and hydrodynamics of bubbles in such fluids. 

Our work is limited to the formation of gas bubbles emitted by a single orifice. Although this 
process is not industrially used, it must be studied before considering the emission of bubbles 
through several orifices. 

1.1 Bubble formation 
Bubbles formation from single orifices can be divided into two categories: formation under 

constant pressure and under constant flow. The influence of chamber volume is closely related 
to that of the pressure difference AP, across the orifice. When the pressure drop across the 
orifice is large and the pressure variations occuring during the formation of bubbles are small 
compared to the total pressure drop, the gas flow rate does not change during bubble formation, 
and the bubbles are said to form under constant flow conditions. 

Similarly ff conditions are such that.on the air-supply side of the orifice the pressure is 
maintained constant during bubble formation, as the bubble size increases the pressure inside it 
decreases resulting in a higher gas flow rate into the bubble. 

The principal models of bubble formation have been proposed by Davidson & Schuler 
(1960) and by Kumar & Kuloor (1969, 1970). 
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These descriptions of bubble formation suggest that the growth of the bubble results in a 
radial expansion and in a vertical translation. The relative significance of these two stages is 
subject to the interaction of the forces on the bubble. We compare these proposed models of 
formation with the experimental observations. 

The non-Newtonian behaviour of a fluid influences the liquid viscosity and varies the drag 
coefficient of the bubble in a non-Newtonian way. 

1.2 Drag coenicient o[ a sphere moving in a non-Newtonian liquid 

Any consideration of the flow of a fluid around a submerged object, or the movement of 
such an object through a fluid of infinite extent can be explained by using the equations of 
continuity and motion given by Bird et al. (1960). 

Consider a pseudoplastic fluid, the rheological behaviour of which can be represented by 
Ostwald-D~ Waele or power law model: 

= 2m [2 trace (E2)]n-112E [ l ]  

where 9 ~ is the shear stress tensor, E the velocity gradient tensor, and m and n are the 
consistency coefficient and the fluid behaviour index in the power law model respectively. 

Dimensional analysis of the equation of motion enables us to obtain the Reynolds number 
associated with a power law fluid: 

r~n  r r2-n  

Re' = .pLW U [21 
m 

where pL is the density of the liquid, D the diameter of the bubble and U the velocity of the 
bubble. 

Most investigators have studied the creeping flow of spheres or bubbles in a non-Newtonian 
power law fluid, and have obtained an approximate solution for the calculation of the drag 
coefficient, Ct~ which is given by 

24X~ [3] 
C°= R e ' '  

where X. is a parameter dependent on n. 
We represent the results obtained for rigid spheres and for bubbles on figure 1, with the 

curve X~ = f(n). 
We observe that the results of Wasserman & Slattery (1964), Hirose & Moo Young (1969), 

Nakano & Tien (1968) are in agreement, but in contradiction with those of Fararoui & Kintner 
(1961); the correction factor X. for the non-Newtonian behaviour varies in opposite directions. 
The solutions given by the former authors are more realistic, because in using the equations of 
motion and continuity applied to the sphere, they determine the drag force Ft by integration on 
the whole sphere, 

1 U 2 Ft = ~ Ct~L A, [4] 

where A is the frontal area of the bubble. 
By using [3] and [4] we obtain 

121r X.m F,= 2 "  r2-'U~' [5] 

where r is the radius of the bubble. 
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Figure 1. Theoretical correlations of X,, from [3], with n for creeping flow of power law fluids around 
submerged spheres. 

We can notice that when n = 1, X, = 1, which is the case of a Newtonian fluid. 
For pseudoplastic fluids, in the case of a rigid sphere, we take the mean of the upper and 

lower bounds of the X, value which is given by Wasserman & Slattery (1964). In all cases, X, 
is greater than one. 

For bubbles, X, is given by the results of Hirose & Moo Young (1%9) or Nakano & Tien 
(1%8). 

1.3 Motion of a gas bubble in a liquid 
The conditions of motion of a gas bubble in a liquid are determined by three factors, the 

Reynolds number, the bubble shape and the interface characteristics. 
The only known theoretical solutions for non-Newtonian fluids are for power law liquids, 

and are presented by Astarita & Apuzzo (1%5). 
Stokes regime: a gas bubble moves in the Stokes regime when the liquid is in creeping flow, 

the bubble is spherical and the interface is rigid. 
Hadamard regime: a gas bubble moves in the Hadamard regime when the liquid is in 

creeping flow, the bubble is spherical and the interface is free. 
Garner & Hammerton (1954) have studied the movement inside rising bubbles in Newtonian 

liquids. For different experimental conditions, they have represented the ratio 

Velocity of rising bubble 
Velocity given by Stokes law 

as a function of the Reynolds number, shown figure 2. 

The transition from rigid to circulating conditions appears for a Reynolds number equal to 
0.01. For a Reynolds number about 0.5 - 1, the bubbles behave as rigid spheres (Stokes law). 



538 J. COSTES and C. ALRAN 

ri ,° 

Hadamard low 

P~ / Bubbles with 

circulat ion ~ Stokes 

\ law 
Rigid spheres ~ . ~  

05 

o i i J . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I 
001 Ol I 0 Io 

Re 

Figure 2. Divergence of the rate of rise of bubble from Stokes' law. 

It will be obvious that for a non-Newtonian fluid, we will obtain the same curve as figure 2. 
In this case for a circulating bubble, the ratio U/Ustokes will be greater than 1.5, and the fluid will 
have elastic properties. 

2. EXPERIMENTAL STUDY 

This experimental study has concentrated on bubble formation from single orifices in a 
pseudoplastic liquid. 

2.1 Experimental apparatus 
A schematic diagram of the apparatus is shown in figure 3. A rectangular Plexiglas tank of 

9 
6 

I. Tank 
2. Chamber 
3. Orifice 
4. Light beom 
5. Photoelectric cell 
6, Counter 
7 Tnle~ ], 8. OutletJWater jacket 
9. Rotameter 
I0. Manometer 

Figure 3. Schematic diagram of the apparatus used for the formation of bubbles. 
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dimensions 0.30 x 0.30x 1.20 m contained the liquid. A circulating water jacket, also con- 

structed of Plexiglas was used to maintain the operating temperature at 25"C. 
Nitrogen was supplied from a high pressure bottle and underwent a two stage expansion for 

its utilisation. The flow rate was adjusted and measured by a valve and a rotameter. To obtain a 
bubble emission at constant pressure, the gas entered a 301 drum, from which it passed into the 
liquid through a stainless steel orifice. The pressure in the chamber below the orifice was 
measured by two manometers, mercury gauge and water manometer for low pressures. 

The frequency of bubble formation was determined by a system including a luminous beam, 
a photoelectric cell, an electronic amplifier and a counter. 

2.2 Characteristics of  the studied liquid 
We used an aqueous solution of sodium carboxymethyl cellulose (C.M.C.) at 3% in weight. 

The molecular weight of C.M.C. is about 400,000. 
The rheological behavior of this solution is pseudoplastic. 

The fl0w properties of C.M.C. solution have been determined by a concentric cylinder 
rotary viscosimeter. For a range of shear rates, from 5 to 200 s -~, the parameters of the power 

law, m and n are determined to be 

m = 3.04 (kg.m -~ x sn-2); 

n = 0.68; 

a2= l .  

a 2 is the coefficient which measures the degree of perfection of the regression line where 
a 2= 1 indicates ideal adjustment. 

The rheological power law model of the 3% C.M.C. solution is 

~- = 3 . 0 4 E  ° ~  [6] 

where 7 is the shear stress and Eo the shear rate. 
With the degradation of the polymer solution and operational errors, the maximum deviation 

is below 6% for m and 3% for n. We have presented on figure 4 the rheogram: shear stress T 
against shear rate Eo and on figure 5 the apparent viscosity/zo against shear rate of the C.M.C. 
solution: 

T 
tza = -fro = mE°n-' [7] 

Since n is less than unity for pseudoplastic fluids, [7] shows that the apparent viscosity 
decreases with increasing shear rate. 

2.3 Experimental procedure 

For a given flow rate, when the pressure in the chamber below the orifice is stabilised, we 
have measured the frequency of bubble formation during a long time (3 rain). For several tests, 
the maximum deviation between these measurements is less than 2%. 

We have used a camera, the objective of which was placed 50 cm from the orifice, with a 
speed of 100 images per sec. With this camera, we followed the bubble growth during its 
formation at the orifice. This work has been realised with the 3% C.M.C. solution, and with an 
orifice radius Re = 0.1265 × 10 -2 m. 
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Figure 4. Flow curve for C.M.C. solution: r = 3.04Eo °6s 
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Figure 5. Variation of apparent viscosity, for C.M.C. solution: r = 3.04Eo °~ with shear rate. 

The orifice cons tant  C~ has been ob ta ined  by  measur ing  the orifice pressure  drop  Ap, 
wi thout  liquid: 

Q = C * ( ~ P )  m [8] 

where  Q is the volumetr ic  flow rate.  

Equat ion  [8] gives: C~ = 4.537 x | 0  -6 m7/2/kg 1/2 for  the chosen  orifice. 
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2.4 Description of the experimental bubble formation 
2.4.1 Qualitative analysis. The cinephotographic observations enabled us to analyse the 

phenomenon with good precision. 
We can distinguish three formation types: 
1st type: Very low flow rates; the bubble begins to grow remaining spherical, its base is fixed 

to the orifice tip. The bubbles obtained are very small, and the frequency of formation is low. 
For greater bubble volumes, the bubble begins to draw out just before detachment. 

This formation type corresponds to an orifice Reynolds number less than 1000. 
2nd type: For higher flow rates, an ellipsoidal bubble, with long vertical axis appears at the 

orifice, while a necking is formed at the bubble base. This necking is accentuated until the 
bubble breaks off. 

3rd type: For orifice Reynolds numbers greater than 4000, bubbles are formed at the 
termination of a gaseous jet, rather than at the orifice tip. 

According to the operating conditions, bubble coalescence occurs very close to the orifice 
and it is possible to form groups of two bubbles. It is to be noticed that the formation of two 
consecutive bubbles is different, and we observe that the volume of the second bubble is 
smaller than the volume of the first one. 

These remarks lead us to believe that we cannot represent all the results by a single 
formation model. 

For the first type of formation, the flow is a function of the extent to which the bubble has 
already been formed. The bubble is formed under constant pressure conditions. 

For greater flows the bubble is formed at the termination of a gaseous jet. There therefore 
exists a point situated above the orifice tip, which acts as a gaseous source feeding the bubble. 
Under these conditions, we can consider that the flow rate is constant and cannot present a 
pulsing re#me related to the frequency of bubble formation. 

For intermediate flows of the second type, bubble formation takes place between the two 
limiting cases: formation under constant pressure and under constant flow conditions. 

2.4.2 Experimental results. By the film analysis, we have determined the variations of 
bubble radius during the formation as a function of time. 

For radius, we have used the radius equivalent to a sphere of equal volume, as calculated by 
rEcuyer & Murthy (1965). 

We have presented the variation of the bubble radius as function of time on the curves 
(figures 6--9) for four experimental conditions (table 1). 

We have also indicated in all cases the final bubble radius r,~p calculated from the 
experimental volume V~xp and the formation time of the bubble texp, from the frequency of 
formation N, so 

/3 V \i/3 
rexp = l~ " ~Xpl \ 4 ~  ] 

a n d  texp----- IlN. 
It appeared that in all cases the volume-equivalent radius would give good agreement, since 

the data pass approximately through the point rexp, texp, as shown on the figures. The formation 

Table 1. 

A 20.5 I0 688 4.17 4.92 
B 29.75 I0 999 5.86 5.07 
C 61.5 98 2066 7.49 8.21 
D 143 900 4800 10.28 13.91 

Orifice Reynolds N 10 s x V 
Tests 106Q(m3/s) Po(Pa) number (S-') (m 3) 
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Figure 6. Comparison of theoretical and experimental bubble radius with time for A. 
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Figure 7. Comparison of theoretical and experimental bubble radius with time for B. 

time calculated by the cinematographic method and the frequencies are in agreement. We 
notice that there is a reduction in bubble radius following detachment; this is due to some gas 
volume being left at the orifice after detachment. 

3. Theoretical modelling 
We shall now compare the experimental results with the formation models obtained by using 

the hypothesis proposed by Davidson & Schuler (1969) and by Kumar & Kuloor (1969, 1970) 
for the formation of bubbles in a pseudoplastic liquid. 
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Figure 9. Comparison of theoretical and experimental bubble radius with time for D. 

The forces operating during the bubble formation in a liquid are 
a. Buoyancy: 

FA = VpLg, i f  Po <~ PL 

where V is the bubble volume, po the density of the gas, and g the acceleration due to gravity. 
This force is overestimated, because it does not take into account the junctions between the 

bubble and the orifice. The correction term is: 

(P, - Pi) 
4 
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where ~b is the diameter of the orifice, Pe and P,-: the pressure outside and inside a bubble 
respectively. Therefore 

F'A = FA -- (P~ - P,) 

b. Surface tension: 
F,, = ~r4,o" cos 0 

where ~r the surface tension and 0 the contact angle. 

c. Drag force: F~ 

If we suppose, that during the formation, the bubble moves in creeping flow in a non- 
Newtonian power law fluid, the drag force is given by [5] 

127rX.mr:-" U". 
F,-- 2" 

By application of Newton's second law, we obtain 

d(MU) [9] 
F ~ - F ~ - F , =  dt 

M is the virtual mass of the bubble proposed by Milne-Thomson (1955), 

11 
M = ]-~ pLV, 

U is the rising velocity of the bubble, 

and Q is the flow rate: 

U dr Q 
= d-~- ~r-~o' 

dV 
Q =-dT 

The term d(MU)/dt  must be determined: 

d(MU) M d U +  dM 
d - - - - ?  - =  -d-i- U dt 

with: 

and: 

Thus, 

dM 11 dV 11 
dt 16 PL dt 16 oL'Q 

d U  d U  dD - 4 Q  2 
dt = d D  d--~ = 

d(MU) II Q2 1 
dt = 1-6" pL" - - ~ "  ~. 
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For our operating conditions we examine the importance of every term in order to make 

simplifications. 
The term of surface tension force is always lower than 60 x 10 -5 Newtons. 
The over-evaluation of the buoyancy at the orifice level, 

~4 2 (Pi - Pc) = Try'2 40" 
4 2r 

is about 10 x 10 -5 N. 
For extreme conditions the buoyancy and the drag force can range from 1000x 10 -5 to 

20000 x 10 -5 N. In every case the term d(MU)ldt is represented at most 5% of the buoyancy. 
From this comparison, we have obtained the simplified relationship which only contains the 

buoyancy and drag forces. 

121rX"mr2-" U". [101 
VpLg = 2" 

The cinematographic study enabled us to determine the bubble Reynolds number during the 
formation. The low Reynolds number values, 0,04-6, have shown that the bubble is moving in 
creeping flow. We shall suppose that the moving bubble obeys Stokes regime, (figure 2), i.e. it 
behaves like a solid sphere. 

Under these conditions, the correction factor X, is determined by taking the mean value of 
the upper and lower bounds which have been obtained by Wasserman & Slattery (1964). 

We solve [10] using the assumptions of Davidson & Schuler (1960) or those of Kumar & 
Kuloor (1969, 1970) in the cases of bubble formation under constant flow rate and constant 
pressure conditions. 

3.1 Bubble formation models obtained by using the hypothesis of Davisson & Schuler (1960) 
The equation of upward motion is 

Vptg = 2" F-" [11] 

where s is the distance between the center of the bubble and the orifice. 
The velocity of the center of the bubble is given by 

ds (2"pLgr'+".'~ '1" 
d-t = \ 9X.m ] [12] 

3.1.1. Formation under constant pressure. For each orifice considered, the gas flow rate is 
proportional to the square root of the pressure drop across the orifice, 

C'~/P8 - 2°" + ~k ~112 dV Q = r p , . g s )  [131 

where Po = Pm - p~h, P~ is the pressure in the chamber, and h is the orifice submergence. 
The bubble is initially spherical and tangential to the orifice. The normal component of the 

surface tension is very small and its effect can thus be neglected. No doubt this is due to 
surface tension effects being less evident for highly viscous liquids, which is the case with this 
CMC solution. 
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The orifice equation becomes: 

Further: 

Thus: 

O = C+(Po + pLgs) ''2. [141 

~ _  dr 
Q = = 4 ~ . r  2 ~-~. 

dr C~ "~ = ~ (Po + Prgs) 't2. [151 

Equations [15] and [12] have been solved simultaneously for r, s, using a Runge-Kutta 
numerical technique for the initial conditions at t = 0, r = Ro where Ro is the radius of the 
orifice, s = 0, dsldt = O. 

The detachment criterion was taken when s = r + Ro. 
3.1.2 Formation under constant flow. At any instant, the bubble volume is given by: 

SO 

V = Qt = 4/3~-?, 

= (30t' " 
r \-~-1r ] " 

Equation [12] becomes: 

ds [2"ptg~'/"[3Q]""n"'to+.n.> 
d-7 = 

By integrating [16], we obtain the final equation: 

[161 

[9X.m ~ 3/,+ s. [47r,~ '/'+3" [ 1 + 4n '~ 3./,+ 3. O ~"/'+3" 
v =  ``-Y/ , , - - 5 - :  [171 

Remark: In the case of a Newtonian liquid, with n = 1, X, = 1 and m = ~: the viscosity of the 
liquid, [17] becomes: 

v = C T :  • 

We have found the equation proposed by Alran (1971) and by Davidson & Schuler (1960) for 
the bubble formation in highly viscous liquids. 

3.2 Bubble formation models obtained by using the hypothesis of Kumar & Kuloor (1969, 1970) 
In this model, the bubble formation takes place in two stages, the expansion stage and the 

detachment stage. The bubble is assumed to stay at the orifice in the first stage, whereas in the 
second stage it is assumed to move upward from the tip until it detaches. 

In neglecting the inertial and surface tension forces, the end of the first stage occurs when 
the upward buoyancy force is equal to the downward drag force, 

with 

E =  

F a  = Ft ,  

FA = v~otx, 

121rX.m r2_.(dr]" 
2" \dt] 

where V~ = volume of the force-balance bubble at the end of the first stage. 
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3.2.1 Formation under constant pressure. As with Davidson & Schuler's (1960) model the 

orifice equation is given by 

dr 4C~2 d--t = (Po + PLgr) t12. [18] 

Equation [18] is integrated numerically with the initial conditions that t = 0, r = Ro. 
The integration is stopped when the force-balance bubble is obtained at the end of the first 

stage, 

121rX.m r(2_.){dr~" 
V~Lg = 2" \d t ]  " [19] 

We have obtained the formation time tE, the bubble volume Vn, and the gas flow rate QE at 
the end of the first stage. 

During the second stage, the gas flow rate can be assumed to be constant and equal to QE. 
At any time, the motion equation is given by 

with 

F~ = F, 

V = VE + QE " t 

and 

12¢tX, m r2_.u,." 
F~= 2 ~ 

Here u', the velocity of the bubble center is made of two components: the velocity of the 
bubble base due to the movement and the velocity of the center due to the expansion. Thus 

dr  
u '=  U+dr,  

where u = dx/dt, x = distance traversed by the base of the bubble. 

We obtain: 

_ /  pLg2" 
U--,  " 3 .2-a/ 

/12~'X,,m (4--~) 
Q¢ ( WE + Q~t) -213 [20] 

Equation [20] is integrated with the conditions 

a t t = 0 ,  V=VE, x = 0  

at t = tF, V = VF, x = r~, r~ bubble radius at the end of the first stage. 
We have thus obtained the final time, tF, and the final volume, VF, of the bubble formation. 
3.2.2 Formation under constant ]tow rate. In this case the bubble volume is given by 

V = Qt. At the end of the first stage we have FA = Ft. Thus, 

J 2 , X.m ( 3 v 0 .  V ~  = 2"(4~.)" \4~.] " [21] 
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Solving for VE, we obtain: 

| 2 w X n m  ~311+3n/ 3 ~2-3n/l+3nQ3n/l+3n" 
[22] 

The second stage is identical to the formation under constant pressure condition. 

2. D I S C U S S I O N  

We have compared the results obtained by these models with experimental data on figures 
6-9. 

First, we notice a small difference between the values calculated by the models using the 
hypotheses of Davidson & Schuler (1960) and those of Kumar & Kuloor (1969, 1970). During 
formation, the variation of the experimental bubble radius lie under theoretical values, because 
the assumption of spherical bubble is far from reality. 

With the data in tables 2 and 3, the comparison between the theoretical and experimental 
final values of the bubble volume and formation time leads us to think that for an orifice 
Reynolds number greater than 1000 (tests B, C, D) the bubble formation can be represented by 
constant flow model. The bubble is comparable to a rigid sphere moving in the Stokes regime. 
In this case, Davidson & Schuler's model agrees better than Kumar & Kuloor's model. 

For a Reynolds number lower than 1000, the formation under constant pressure appears 
more suitable. In these conditions, the Reynolds number of the bubble is very low, between 
0.04 and 1.43. So, from figure 2, the behaviour of the bubble will be included between the two 
limit cases, Hadamard and Stokes' regimes. In table 4, we have compared the experimental 
results with theoretical values obtained with Davidson & Schuler's model for a bubble moving in 

Table 2. Comparison with models obtained by using the hypotheses of Davidson & Schuler (1960) (Stokes law; Xn = 1.27) 

Constant gas flow rate Constant pressure 

Test lOs x Vexp texo lOs x Vth ~ ttt, ~ lOs x Vth Vezp t,, 
(m s) (s) (m 3) Vth (s) t,h (m 3) Vth (s) ta, 

A 4.92 0.24 3.99 !.23 0.195 0.81 6.6 0.75 0.22 1.09 
B 5.07 0.17 5.13 0.99 0.172 0.99 6.6 0.77 0.22 0.77 
C 8.21 0.135 8.34 0.98 0.138 0.98 835 0.94 0.16 0.84 
D 13.91 0.097 14.68 0.95 0.104 0.93 15.83 0.88 0.116 0.84 

Table 3. Comparison with models obtained by using the hypotheses of Kumar & Kuloor (1969, 1970) (Stokes law: 
X, = 1.27) 

Constant gas flow rate Constant pressure 

Tests los x Vexp texp 106 X Vth ~ t,h re2 ~ lO s X El, Ve,p t,h 
(m s ) (s) (m s ) Vth (s) tth (m 3 ) Vth (s) tat 

A 4.92 0.24 4.38 i.12 0.213 1.13 7.15 0.69 0.173 1.39 
B 5.07 0.17 5.62 0.90 0.189 0.90 7.15 0.71 0.173 0.98 
C 8.21 0.135 9.15 0.90 0.149 0.91 9.16 0.90 0.150 0.90 
D 13.91 0.097 16.12 0.86 0.112 0.87 16.07 0.87 0.115 0.84 

Table 4. 

constant pressure 
Davidson & Schuler's model 
(X, = 0.84, Hadamard Law) 

A 4.92 4.41 0.90 

Test los × Vc~p los × Vts V ~  
(m 3) (m 3) V:h 
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the Hadamard regime. Thus depending upon experimental conditions, the interface of a gas bubble 
will tend to reach one or the other of the two extreme cases: free interface or rigid interface. 

For generalisation, we have considered the change in volume of the bubbles as a function of 
the gas flow on figure 10 for the same orifice. This curve can be considered to consist in two 
zones: 

(a) At low flow rates, the volume of the bubble is almost constant or increases only slightly. 
The bubbles are small and clearly separated. In this zone, the effect of pressure on the 
frequency of bubble generation is significant. 

The orifice Reynolds number is less than or close to 1000, and it can be considered that the 
bubble formation takes place at constant pressure. 

(b) At high flow rates, the bubble volume increases steadily because the frequency of 
formation is almost constant. It is considered that bubble formation takes place at almost 
constant flow rate. 

The orifice Reynolds number is greater than 1000. Under some conditions, it has been 
observed that the bubbles coalesce at the orifice. 

Since the way in which double bubbles form is different from that of single bubbles, for the 
rest of the investigation only results obtained without coalescence will be considered. 

For high flow rates, the straight line calculated by the constant gas flow rate models obtained 
by using the hypothesis of Davidson & Schuler (1960) [17] and those of Kumar & Kuloor (1969, 
1970) has been marked on figure 10; with the assumption that the motion of the bubble 
conforms with Stokes law. 

It can be seen that the experimental results agree well with the theoretical curve of 
Davidson & Schuler's model, but the formation of bubbles cannot be represented by a unique 
relationship. According to the experimental conditions, the constant gas flow rate model cannot 
represent the formation of bubbles at low flow rate. 

So, for studying bubble formation at constant pressure, we have considered the variation in 
bubble volume at the orifice as a function of pressure drop Po in figure 11. The theoretical 
curves obtained by using the constant pressure models of Davidson & Schuler and Kumar & 
Kuloor have been marked on figure 11. 

As we have seen before for this viscous solution of CMC, the experimental points lie 
between the curves corresponding to Stokes' law and those corresponding to Hadamard's 
conditions. 
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F~ure 10. Variation of bubble volume with gas flow rate for solution 3% C.M.C., and orifice radius: 
Ro = 0.1265 x 10-2 m. 
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Figure I1. Variation of bubble volume with orifice pressure drop for solution 3% C.M.C., and orifice radius: 
Ro = 0.1265 × 10 -2 m. 

5. CONCLUSION 

The formation of gas bubbles in a highly viscous non-Newtonian pseudoplastic liquid was 

studied theoretically and experimentally. 
We have seen that under experimental conditions the formation of bubbles conformed 

approximately with either the constant pressure or constant gas flow rate models obtained by 

using the hypotheses of Davidson & Schuler, and those of Kumar & Kuloor. 
When the orifice Reynolds number is lower than I000, bubbles are formed under constant 

pressure conditions; for an orifice Reynolds number higher than 1000, the bubbles are formed 

under constant flow rate conditions. 
The comparison of theoretical variation of bubble radius seems to show that Davidson & 

Schuler's and Kumar & Kuloor's are in agreement, but Davidson & Schuler's model is more 
suitable than Kumar & Kuloor's model for representing bubbles formation. 
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